A Generalization of the Dirichlet Product
نویسنده
چکیده
/(") " E 9(d)h(n/d). d\n In this paper we define a convolution of two arithmetical functions that generalizes the Dirichlet product. With this new convolution, which we shall refer to as the the "fc-prime product," it is possible to define arithmetical functions which are analogs of certain well-known functions such as Eulers function (f)(n) , defined implicitly by the relation (1.1) J2 Hd) = n.
منابع مشابه
Relative order and type of entire functions represented by Banach valued Dirichlet series in two variables
In this paper, we introduce the idea of relative order and type of entire functions represented by Banach valued Dirichlet series of two complex variables to generalize some earlier results. Proving some preliminary theorems on the relative order, we obtain sum and product theorems and we show that the relative order of an entire function represented by Dirichlet series is the same as that of i...
متن کاملGraph product of generalized Cayley graphs over polygroups
In this paper, we introduce a suitable generalization of Cayley graphs that is defined over polygroups (GCP-graph) and give some examples and properties. Then, we mention a generalization of NEPS that contains some known graph operations and apply to GCP-graphs. Finally, we prove that the product of GCP-graphs is again a GCP-graph.
متن کاملA Sharp Upper Bound for the First Dirichlet Eigenvalue and the Growth of the Isoperimetric Constant of Convex Domains
We show that as the ratio between the first Dirichlet eigenvalues of a convex domain and of the ball with the same volume becomes large, the same must happen to the corresponding ratio of isoperimetric constants. The proof is based on the generalization to arbitrary dimensions of Pólya and Szegö’s 1951 upper bound for the first eigenvalue of the Dirichlet Laplacian on planar star-shaped domains...
متن کاملA GENERALIZATION OF PRIME HYPERIDEALS
Let $R$ be a multiplicative hyperring. In this paper, we introduce and study the concept of n-absorbing hyperideal which is a generalization of prime hyperideal. A proper hyperideal $I$ of $R$ is called an $n$-absorbing hyperideal of $R$ if whenever $alpha_1o...oalpha_{n+1} subseteq I$ for $alpha_1,...,alpha_{n+1} in R$, then there are $n$ of the $alpha_i^,$s whose product ...
متن کاملThe second dual of strongly zero-product preserving maps
The notion of strongly Lie zero-product preserving maps on normed algebras as a generalization of Lie zero-product preserving maps are dened. We give a necessary and sufficient condition from which a linear map between normed algebras to be strongly Lie zero-product preserving. Also some hereditary properties of strongly Lie zero-product preserving maps are presented. Finally the second dual of...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1980